-
o -
- .
- -
"raapammme®®

KERNEL HIDDEN
IDE WINDOWS 10

BLACKHAT 2016
ALEX IONESCU
@AIONESCU

BIO

Vice President of EDR Strategy at CrowdStrike, a security startup
Previously worked at Apple on iOS Core Platform Team

Co-author of Windows Internals 5t and 6" Editions

Reverse engineering NT since 2000 — main kernel developer of ReactOS
Instructor of worldwide Windows Internals classes
Conference speaking:

* Infiltrate 2015

* Blackhat 2016, 2015, 2013, 2008

* SyScan 2015-2012, NoSuchCon 2014-2013, Breakpoint 2012
* Recon 2016-2010, 2006

For more info, see www.alex-ionescu.com

http://www.alex-ionescu.com/

MJF HAS SPOKEN: YOU CAN ALL GO HOME NOW

Microsoft is revealing more details about how Bash on Windows 10 works, and
the company's 'Drawbridge’ pico-process work figures prominently.

% By Mary Jo Foley for ALl About Microsoft | April 23, 2016 -- 14:28 GMT {07:28 POT} | Topic: Windows 10

ead.|it's the)Windows

provides the foundation that enabled the Linux binaries to run on Windows.

“Spoiler alert”: This is not how the English
language works.

OUTLINE

* Architectural Overview

Minimal and Pico Processes
Pico Provider Interface

LXSS Components
* LxCore Kernel-Mode Driver
* Functionality, Interfaces & Attack Surface
* LxssManager Service
* Functionality, Interfaces & Attack Surface

LXSS IPC Interfaces

e Win32-Linux Communication

OUTLINE

Security Design Considerations
* Before & After
e Kernel Callout & API Behavior for Endpoint Products
* Forensic Analysis (DbgView / WinDBG) (if time allows)

Pico Demos (if time allows)

Conclusion

Q&A

5
-
s

/y
s
T bl e TR

N i"‘i..‘{ |

P|CO PROCESS INTERNALS ':‘ ,

MINIMAL PROCESS

* Unofficially implemented since Windows 8.1, a minimal process is a bare-bones process with a token, a
protection level, a name, and a parent.

 Empty address space (no PEB, no NTDLL, no KUSER_SHARED_DATA)
* No handle table
e EPROCESS.Minimal ==
* Threads created inside of a minimal process are called minimal threads
* NoTEB
* No kernel-mode driven user-stack setup
e ETHREAD.Header.Minimal ==
* In Redstone 1 these can be created with NtCreateProcessEx from kernel-mode with flag 0x800

e Built-in ones include:
* “Memory Compression”, managed by the Store Manager

* “Secure System”, managed by Virtual Secure Machine (VSM)

PICO PROCESS

A Pico Process is a minimal process which has a Pico Provider (kernel-mode driver)

* Same state as a minimal process, but EPROCESS.PicoContext is != NULL
Both Pico and Normal Threads can exist within a Pico Process
 ETHREAD.PicoContext is != NULL for Pico Threads
When a minimal thread makes a system call, it’s routed to a Pico Provider instead
When ETW stack traces are being generated for a Pico Process, the Pico Provider is called
When a user-mode exception is raised within a Pico Process, the Pico Provider is called instead
* Also when a Probe and Lock / MDL fault is generated on a user-range
When the name of a Pico Process is being requested, the Pico Provider is called instead
When a handle is being opened to a Pico Process or Pico Thread, the Pico Provider is called
When a Pico Thread and/or a Pico Process die, the Pico Provider is notified

 When a Pico Process is being terminated, the Pico Provider is called instead

PICO PROVIDERS

* Pico providers are essentially custom written kernel modules which implement the necessary callbacks
to respond to the list of possible events (shown earlier) that a Pico process can cause to arise

* NT implementation of the “Drawbridge” Microsoft Research Project
e Can be registered with PsRegisterPicoProvider

e Passin array of functions which handle the required event callbacks

* Receive array of functions which allow creation and control of Pico processes (see next slide)
 However, only allowed if PspPicoRegistrationDisabled is FALSE
» Set as soon as PiplnitializeCoreDriversByGroup returns — before ELAM and 3™ party drivers can load

* Currently only one Pico provider can be registered, as the callbacks are simply a global function array

PICO API

* Create Pico processes and threads: PspCreatePicoProcess, PspCreatePicoThread

* Get and set PicoContext pointer: PspGetPicoProcessContext, PspGetPicoThreadContext

 Get and set CPU CONTEXT structure: PspGetContextThreadInternal, PspSetContextThreadInternal
* Destroy Pico processes and threads: PspTerminateThreadByPointer, PspTerminatePicoProcess
 Resume and suspend Pico processes and threads: PsResumeThread, PsSuspendThread

* Set user-mode FS and GS segment for Pico threads: PspSetPicoThreadDescriptorBase

BASIC BLOCK DIAGRAM

NT Process Minimal Process Pico Process

Process Environment Block
(PEB)

ref: https://blogs. msdn microsoft.com/wsl/2016/05/23/pico-process-overview/ © l\/llcrosoft Corporation 2016

https://blogs.msdn.microsoft.com/wsl/2016/05/23/pico-process-overview/

PICO PROVIDER SECURITY

* Pico Providers also “register” with PatchGuard, providing it with their internal list of system call handlers
* Essentially, this means that the Linux system calls are protected by PatchGuard, just like the NT ones

e Additionally, attempting to register a “fake” Pico Provider, or modifying key Pico Provider state will also
result in PatchGuard’s wrath

* For example, playing with PspPicoRegistrationDisabled

* Even if restoring the value back to its original value
» Patching the callbacks (PspPicoProviderRoutines) will also result in detection by PatchGuard
* As seen before, only “core” drivers can be Pico Providers

* Boot Loader enforces that core drivers are signed by Microsoft, and “Ixss.sys” is hardcoded inside the code

WSL COMPONENT OVERVIEW

A Pico Provider driver (LXSS.SYS / LXCORE.SYS) which provides the kernel-mode implementation of a
Linux-compatible Kernel ABI and API, as well as a Device Object (\Device\lxss) for command & control.

* Italso provides a “bus” between the various WSL Instances and the NT world, and implements a virtual file
system (VFS) interface, including a device inode for command & control on the Linux side.

A user-mode management service (LxssManager), which provides an external-facing COM interface,
relying information to the Pico Provider through its Device Object

A Linux “init” daemon (like Upstart, systemd, etc...), which is created for every active WSL Instance and
is the ancestor of all other Linux processes

A Windows management process for performing updates/servicing, installation, uninstallation, and user
management (LxRun.exe)

A Windows launcher service which communicates with the LxssManager and spawns a new instance of
WSL (and hence init daemon) and executes the desired process (typically “/bin/bash”)

User Token

bash.exe

[Ix::helpers::SvcComm]

)

: Win32 World :
_E__Hc_omiﬂ ___________________________________ "_

com

SYSTEM Token
(Protected Process Light)

WindowsSide |

ING :
iocti()
PID, Token, Section, Memory, Pipe, Console)

DATA:
read()/write()

MARSHALING :
IRP[IRP_MJ_DEVICE_CONTROL]
(PID, Token, Section, Memory, Pipe, Console)

DATA:
IRP[IRP_MJ_READ / IRP_MJ_WRITE]

5
-
s

/y
s
e 001 “qp o8

N i"‘i..‘{ |

ARCH |TECTU RAL OVE R\ |EW
LXCORE (KERNEL-MODE) INTERNALS - '* | ':‘ |

LXCORE FUNCTIONALITY

e LXCORE.SYS is the large (800KB) kernel-mode Ring O driver which implements all the functionality that a
Linux application inside of a Pico process will see

* In some cases, functionality is implemented from scratch (such as pipes)
* In other cases, functionality is wrapped on top of an existing NT kernel mechanism or subsystem (scheduling)

* Inyet other cases, functionality is heavily built on top of an existing NT kernel primitive, with some from-scratch
functionality on top (VFS + inodes on top of NTFS for VolFs/DrvFs, but on top of NT Process APIs for ProcFs, for

example)
e Decision on how far to go down with wrapping vs. re-implementing was done based on compatibility
* For example, Linux pipes have subtle enough differences from NT pipes that NPFS could not be used

* |n some cases, compatibility isn’t perfect — NTFS is not quite identical to EXT+VFS, but “close enough”

* Reliance on many key portability design decisions done by NT team from day 1 (for POSIX support)

LXCORE CUSTOMIZATION

* There are a few registry settings that can be controlled/configured to modify LxCore behavior:
e PrintSysLevel
* PrintLogLevel
* KdBreakPointErrorLevel
e Tracelogginglevel
* KdBreakOnSyscallFailures
* TracelastSyscall
* WalkPicoUserStack
* RootAdssbusAccess

* All present in the HKLM\SYSTEM\CurrentControlSet\Services\Ixss\Parameters key

SYSTEM CALLS

* Full “official” list available from Microsoft: https://msdn.microsoft.com/en-
us/commandline/wsl/release notes

* 216 implemented as of the release build

e Called by LxpSysDispatch

» Support for ptrace() tracing of system calls

e Can enable breaking on system call failure, for debugging

* [xpTraceSyscall used for both ETW logging (LxpPrintSysLevel) and DbgView (LxpTracelastSyscall)

https://msdn.microsoft.com/en-us/commandline/wsl/release_notes

VFS / FILE SYSTEM

* Implements a “VolFs” system, which is the Linux-facing file system with support for UNIX rights, etc.
* Implemented on top of Alternate Data Streams and Extended Attributes part of NTFS
* Not interoperable with Win32 applications
e Also implements a “DrvFs” system, which is the Linux-facing file system that maps Win32 drives
* Implemented as mount points that map to actual NTFS data on the machine
* Rights are dependent on the token that was used to launch the initial WSL instance
* Provides emulation/wrapping/actual implementation for various virtual file system concepts:
* ProcFs mostly works (calls kernel query APIs as needed) or just already has the data
 TmpFs also exists and implements various devices, including the Binder (key Android IPC from the BeOS days)

e SysFsis there, etc...

VES BLOCK DIAGRAM

Applications (bash, sed, gcc, git, etc.)

Usermode
Kernel mode

Lxcore.sys

System call layer
VFS
VolFs DrvFs TmpFs ProcFs, SysFs, etc.
/, [root, /home /mnt/c, /mnt/d /dev /proc, /sys, etc.

P

NT kernel

ObMgr loMgr NTFS

ref: https://blogs.msdn.microsoft.com/wsl/2016/06/15/wsl|-file-system-support/ © Microsoft Corporation 2016

https://blogs.msdn.microsoft.com/wsl/2016/06/15/wsl-file-system-support/

LXCORE INITIALIZATION

 When LxCore initializes (LxInitialize), it first

* Registers itself as a Pico Provider

* Then creates an IRP queue for the IPC mechanism,

* Sets up Event Log tracing,

* And creates its \Device\lxss Device Object with the appropriate Security Descriptor
* No other work is performed until IRPs are received

* Create/Close/Cleanup for managing handles to its various entities

* DeviceControl for sending actual command & control requests

e Read/Write for the IPC mechanism

DEVICE OBJECT INTERFACES

» Although \Device\lxss is a single Device Object, it implements 5 different interfaces on top of it.
* A Root Bus Interface — used by LxssManager to create new Instances. Only accepts the single IOCTL.

* A Bus Instance Interface — automatically opened by the Root Bus Interface when a new Instance is
created. Internally represented as \Device\lxss\{Instance-GUID}. Acts as the command and control
interface for the Instance.

* A Bus Client Interface — used by LxssManager whenever an IPC Bus Server is registered or connected to,
such as when talking with the init daemon. Represented as \Device\Ixss\{Instance-GUID}\Client

* An IPC Server Port Interface — used when an IPC Bus Server is registered. Represented by
\Device\lxss\{Instance-GUID}\ServerPort

 An IPC Message Port Interface — used when an IPC Bus Client connects to its Server. Represented by
\Device\lxss\{Instance-GUID}\MessagePort

ROOT BUS / INSTANCE CREATION

* The Root Bus implements a single IOCTL:
« 0x22006F = IOCTL_ADSS_CONTROL_DEVICE_CREATE_INSTANCE

* A handle is obtained by directly opening \Device\lxss with no other parameter or EA
e LxssInstance:: Startinstance called by LxssInstance::StartSelf is normally the only path here

* Creating an instance requires
* Aninstance GUID
* Aroot directory handle (RootFs)
* Atemporary directory handle (TmpFs)
 Ajob object handle for the init process
* Atoken handle for the init process
* Information on which paths to map with DriveFs

* Aninstance termination event handle

BUS INSTANCES

* Once an instance is created, LxCore will automatically open a handle to its corresponding file object
under the \Device\lxss namespace, which will be represented by its GUID

* Cannot arbitrarily attempt to open \Device\lxss\{GUID} from user-mode
* Accepts the following IOCTLs:

* 0x220073 =10CTL_ADSS_SET_INSTANCE_STATE

* 0x22007B = IOCTL_ADSS_BUS_MAP_PATH

* 0x22007F = IOCTL_ADSS_BUS_MAP_PATH_2

* (0x220083 = |OCTL_ADSS _UPDATE_NETWORK

 0x220087 = IOCTL_ADSS_CLIENT_OPEN

e Starting an instance will cause the creation of the initial thread group & process for the init daemon

e Other IOCTLs used for DriveFs mappings and for updating the NICs exposed to the WSL Instance

BUS CLIENTS

e Automatically opened by the Bus Instance when IOCTL_ADSS_CLIENT_OPEN is used, creating a File
Object with the “\Client” suffix under the Instance GUID

e Accepts the following IOCTLs:
* (0x20002B =I0CTL_ADSS REGISTER_SERVER

0x22002F = [OCTL_ADSS_CONNECT_SERVER

* 0x22003F = IOCTL_ADSS_ENLIGHTENED_FORK

* 0x22004B = IOCTL_ADSS_ENLIGHTENED_FORK_CALLBACK

* 0x22004F = |OCTL_ADSS_ENLIGHTENED_FORK_CALLBACK_STATUS
* 0x22008F = IOCTL_ADSS_FILE_SYSTEM_CALLBACK

* 0x220093 = IOCTL_ADSS_FILE_SYSTEM_CALLBACK_STATUS

» Additionally, exposed to the WSL Instance itself in the Linux world under \dev\Ixss

* Normally only the init daemon (PID == 1) is allowed a handle to this

SERVER /MESSAGE PORTS

* A server port is automatically created as a \ServerPort file object under the Instance GUID when
IOCTL_ADSS_REGISTER_SERVER is sent from a Bus Client

* Similarly, a message port (\MessagePort) is created when
IOCTL_ADSS_IPC_SERVER_WAIT_FOR_CONNECTION is used (and a connection is established)

e Support for all the marshalling and unmarshalling IOCTLs is implemented here

* Also supports map/unmap memory IOCTLs

e Allows registration and signaling of a port-associated event

* And finally registration/unregistration and create/open of shared memory sections

e More in the IPC section...

/y
”U!’f.er'I TIRLA
0ot ’.‘QB 08

-"_‘ . wid “ T ' Lk 2 : ‘ l }_’{/ /

ARCHITECTURAL OVER IEW e | S
LXSSMANAGER (USER-MODE) INTERNALS - WINﬂIDE ‘ |

LXSSMANAGER INITIALIZATION

e LxssManager (LXSSMANAGER.DLL) is a service-hosted service living inside of a SVCHOST.EXE process
* Runs as a Protected Process Light (PPL) at the Windows Level (0x51)

* Will discuss in the security section

» Registers a COM Class (CLSID LxssUserSession) which implements the [ID_ILxssSession interface

LXSSMANAGER INTERFACES

* LxssManager has internal classes for managing the state of WSL in general (Filesystem::,
LxssNetworking::/LxssLinuxTimezone::LifetimeManager::)

* It exposes LxssSession:: over COM
e GetCurrentinstance(), StartDefaultinstance(), SetState(), QueryState(), InitializeFileSystem()
* Once an instance is started or queried, an IID_ILxssInstance interface is exposed (Lxsslnstance::)

* GetConfiguration(), Getld(), QueryState(), SetState(), CreateLxProcess(), RegisterAdssBusServer(),
ConnectAdssBusServer(), GetState(), StartSelf(), StopSelf(), GetSuspendState()

 Some requests can be done from any arbitrary user (CreateLxProcess) while others require Admin rights
(RegisterAdssBusServer)

* Two in-box components communicate with it: LXRUN.EXE and BASH.EXE

LXRUN INTERFACE

* LxRun (LXRUN.EXE) is responsible for User Management, Installation and Uninstallation of WSL,
Servicing/Updates.

* Functionality exposed through command-line interface: /install, /uninstall, /setdefaultuser, /update
* Uses the Ix::helpers::SvcComm class to communicate with LxssManager
* Uses Ix::helpers::LxUser to provide user management

» Essentially done by launching the /usr/sbin/usermod, /usr/bin/id, /usr/bin/passwd, /usr/sbin/addgroup,
Jusr/sbin/deluser, /usr/sbin/adduser binaries in an invisible WSL Instance

e Users Ix::run (DoUpdate, Dolnstall, HashFile, InstallCleanup, RemoveFolderStructure, AcquireFile)

* Again, relies on Linux binaries such as /usr/lib/update-notifier/apt-check, /usr/bin/apt, /usr/sbin/update-locale

BASH.EXE INTERFACE

 BASH.EXE is responsible for being the Win32-friendly launcher of WSL Instances

* [x::bash::DolLaunch is used to either launch /bin/bash or another binary, if BASH.EXE —c “valid path” was used
 NOTE: BASH.EXE —c “man 2 open” will actually launch “/usr/bin/man” and not “/bin/bash —c /usr/bin/man”

* Launch is done by using the same Ix::helpers::SvcComm class as LXRUN.EXE

* Reads the DefaultUid in the user’s registry settings to associate the correct Linux user with which to spawn

 HKCU\Software\Microsoft\Windows\CurrentVersion\Lxss\

o
-
*
........

/y
s
0ot ..‘qﬁ 0%

._v.. 3 I - | HT‘U/

 ARCHITECTURAL OVERVIEW =
INIT (USER-MODE) INTERNALS — LINUX SIDE | ':‘ |

INIT DAEMON INITIALIZATION (INITENTRY)

* close() every handle from 0 to 2048

* open() a handle to /dev/kmsg and then dup3() into stderr it for error logging

* open() a handle to /dev/null and then dup3() into stdin and stdout

e open() a handle to /dev/Ixss

» Call ConfigCreateResolvConfSymlinkTarget to symlink ../run/resolveconv/resolv.conf into /etc/resolv.conf

e Call InitConnectToServer and send IOCTL_ADSS_CONNECT_SERVER to connect to the IPC Server “Ixssmanager”
» Call SaveSignalHandlers and SetSignalHandlers, using sigaction() to save and set new signal handlers as needed

* Call ReadMessageFromServer in a loop, calling reboot() if an invalid message is received

INIT RESPONSIBILITIES

* Through the Ixssmanager IPC channel, init will listen for message requests.
* Update Network Information (/nitUpdateNetworkinformation) -> update /etc/resolv.conf

* Update Timezone Information (ConfigUpdateTimezonelnformation) -> update
/usr/share/zoneinfo/Msft/localtime and symlink it to /etc/localtime

* Update Hosthame Information (ConfigUpdateHostNamelnformation) -> sethostname(),
setdomainname(), update /etc/hostname and create /etc/hosts

» Create process (CreateProcess) -> create the environment block, set the command line and working
directory, setup the standard handles, then call fork(). Once the new PID exists, setup UID/GID,
HOME/PATH environment variables, set the TTY SID, duplicate the standard handles and execvpe() the
new process

* Create session leader (/nitCreateSessionLeader) -> fork() another init and connection to Ixssmanager

5
-
s
.......

/y
r””f’f.“||vl|li‘l\\\
i ‘ 001 "5 08

St . 5 ‘." kil | H”/
LXSS |PC |NTERFACES i E _ o
WIN32-LINUX COMMUNICATION : 'ﬂ , | ':‘ |

SOCKETS / FILES

* Unix sockets are supported for Linux-Linux application communication, but Internet sockets are also
implemented, allowing both local and remote communications over IP

* By creating a localhost server, a Win32 application can connect to it and engage in standard socket API
communications

e Similarly, the server could be on the Win32 side, and the client is in an WSL Instance

* Raw sockets are supported, but require an Admin Token on the NT side to comply with TCPIP.SYS checks

* Using DriveFs, it should be possible for a Windows and Linux app to use read/write/epoll on a file
descriptor on the Linux side, and a file object on the Windows side with Read/Write/WaitForSingleObject

BUS IPC (“ADSS” IPC)

 The only other way for a Windows and Linux application to communicate is to use the internal LxCore-
provided “Bus” between clients of an instance, part of the original “ADSS” interface (Android Sub System)

* Allows a named server to be registered and connected to, after which both sides can:
* Use Read/Write API calls for raw data

* Use IOCTL API calls for marshal/unmarshal operations

 The Windows side needs to register a server by either sending the correct IOCTL (to the Bus Instance) or by
using the ILxssSession COM Interface and calling the RegisterAdssBusServer method (Administrator only)

* Then, can use the IOCTL_ADSS IPC_SERVER_WAIT_FOR_CONNECTION on the returned Server Port handle

* The Linux side needs to open a handle to the Bus Instance (\dev\Ixss) as root (UID 0) and then send the
IOCTL_ADSS CONNECT_SERVER IOCTL

* Restricted to the init daemon only (PID must be 1)

* Or, set “RootAdssbusAccess” in HKLM\CCS\Services\Ixss\Parameters key to 1

BUS IPC MARSHALLING

* With a connection setup, the following types of metadata can be marshalled

PIDs from Linux to Win32. Used during process creation by the init process to provide the fork()’ed PID

Console handles from Win32 to Linux. Used during process creation to setup the TTY/SID after unmarshalling,
to correspond to the Win32 console handles

Pipe handles from Win32 to Linux. Can be used during process creation to associated the in/out/error handles
of the Linux application with a Win32 pipe handle. Allows “piping” from Linux to Win32, but sadly not exposed.

Tokens from Win32 to Linux. Overrides the NT token stored in the LXPROCESS structure used for the next fork()
called. Used during process creation, but provides interesting capabilities.

* |OCTLs:

0x220097/9B = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_PID
0x22009F/A3 = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_HANDLE
0x2200A7/AB = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_CONSOLE
0x2200AF/B3 = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_FORK_TOKEN

BUS IPC DATA EXCHANGE

A Linux application can share part of its virtual address space with an NT application, which can then map it

Both sides can register/unregister and create/open shared memory sections, which appear as file descriptors

on Linux and Section Object handles on Win32

A Win32 application can register an Event Object handle and associate it with the message port, and then

call WaitForSingleObject on it — the Linux side can signal it with an IOCTL

A Linux application can use epoll() to wait on its message port file descriptor, and a Win32 application can

signal it with an IOCTL

|OCTLs:

0x220037/3B = IOCTL_ADSS_IPC_CONNECTION_SHARE/UNSHARE_MEMORY

0x220043/47 = 10CTL_ADSS_IPC_CONNECTION_MAP/UNMAP_MEMORY

0x220053/57 = IOCTL_ADSS_IPC_CONNECTION_CREATE/OPEN_SHARED_SECTION
0x22005B/5F = IOCTL_ADSS_IPC_CONNECTION_REGISTER/UNREGISTER_SHARED_SECTION
0x220063/67 = IOCTL_ADSS_IPC_CONNECTION_REGISTER/SET_SIGNAL_EVENT

/y
r”””'“lll' TIRLA
007 ..‘QB 08

- .

1 o= ' :
: :

~ SECURITY DESIGN CONSIDERATIONS 7\
BEFORE & AFTER & 3 :

INITIAL ANALYSIS

Pico Processes were originally the cornerstone behind “Project Astoria”
* Full Android Runtime on Windows 10 Mobile / Phone, implemented as a “true” NT Subsystem
* Only on Phone SKU, and was killed in 1511 Update RTM

In Windows 10 Anniversary Update Previews, Pico functions were once again functional
* Adss.sys was replaced by Ixss.sys

No more “Project Astoria”: Pico processes are now used for the re-re-reimplementation of the original
POSIX subsystem from Windows NT

* New Name: Windows Subsystem for Linux (WSL)
Instead of running Android, the user-space environment is Ubuntu 14

Significant improvements to run desktop-class Linux applications were made

* Other Android-specific features removed, such as /dev/fb or /dev/adb

DESIGN [SSUES IN PREVIEW BUILDS

* WSL processes were initially invisible in Task Manager
 Still visible in other tools
 Documented kernel API did not provide notification for Pico processes or threads
* Invisible from endpoint security products/AV
 WSL processes and libraries (.so) are not loaded as SEC_IMAGE, so no image load notifications
* Invisible from endpoint security products/AV
 Completely bypasses AppLocker rules
» WSL file access and network 1/0O is kernel-sourced
* Does result in minifilter and WFP callbacks, but might be “trusted” due to kernel being the caller
* SelocateProcessimageName returns NULL for Pico processes
e Cannot create firewall rules or get the name in WFP callout driver

 “Developer Mode” and “Feature Installation” were required for WSL — but driver could be
communicated with from

DESIGN ISSUES IN PREVIEW BUILD

Mo

I ¥ push
i@ f 3 | ‘05224672 h
LxCore is installed by default in the kernel | sioeieie pusk
| *05asd4674 push
H H H 05224676 h
even if the feature is disabled and | 2aci67s oeh
| "05aed67a push
H | 05asd67c 488dec24el 1 bp, —1Fh
deVEIC)per mode is turned off " 0Sac4681 4381ech0000000 sub isl‘i,ﬁﬁﬁﬁ .
| ‘0524688 488b05a%a9%feff mov rax,gword ptr [LXCORE!__security_coockie (fffff80b°05acf038)]
| "05ae468f 4833c4 XOT rax,rsp
| "05aes4692 4889450f nov gword ptr [rbp+0Fh], rax
Checks were done only by LxssManager | 08ac4636 48804571 nov Zax.guord pir [rbps7Fh]
| "05ae469a 4cB8dSS5ct lea rl0, [rbp-31h]
. . | "05ae469 4cB8bd9 nov rll, rcx
over the COM interface, but not the driver 0acdbal 459945at Rov auord ptr [rbp-S1h] rax
itself ommand - Kernel ‘usb2:targetname=sammy’ - WinDbg:10.0.11063.818 AMD64
| # Child-SP Retiddr Call Site
. L |00 £££ffc200°07d34188 ffff£80b 05b11057 LXCORE!LxElfValidateHeader64
' Driver a||0wed Adm|n|strators to have RW 101 £££fc200°07d34190 ff£f££80b 05b0484b LICORE!LzpMmMapInageContextInitialize+0x57

ffffc200°07d34210 f££f£f£80b° 05b04a89 LECORE!LzpThreadGroupMapInageContextInitialize+0x10f

"05b0419f LECORE!LxpThreadGroupParametersPopulate+0=x2d
"05b04044 LECORE!LxpThreadGrouplaunchEzecute+0=5f
"05aed03c LECORE!LxpThreadGroupLlaunch+0x130

"0Saedalft LECORE!LxpInstancelaunchlnitProcess+0x164
"05aed87f LECORE!LxpInstanceStart+0x112

£5
£5
3T
| i
As SUCh, could Completely bypass 07d34eb0 £it *05b330d0 LECORE!LxpInstanceSetState+lzdb
i
£5
£5

03 ££££0200° 07d342£0

Access 04 ££££c200° 07d34360
05 ££££0200°07d344£0

*07d34540

$07d34670

*07d34700
"07d34740

LxssManager/Developer Mode/Feature 07434750

"05b32a40 LECORE!AdssBusSetInstanceStateloctl+0x54
‘05223194 LECORE!AdssBusloctl+0xac
"05ae37da LECORE!LxpControlDeviceloctlidssBuslnstance+0=d4
| 07434800 *19248bf1 LECORE!LxpControlDeviceloctl+0=aa
o = | 07434850 *192480ab nt!IopE=xxControlFile+0x9%el
Installation and dlrectly send commands to ; *07d34a20 £FE££801° 18£53283 nt!NtDeviceloControlFile+0x56
| *07d34a90 00007ffd 6£fdf19a? nt!KiSystemServiceCopyEnd+0x13
Q g I 00000006 ' ed6f£398 00007f£f7 £46a14b3 ntdll!ZwDeviceloControlFile+0x17
the driver (from Admln) 11 00000006 ed6££3al D0007££7 f46a1d84 PicoMe+Dx14hd
| 00000006 edeffef0 00007f£f7 fd4balcBe PicoMe+0x1d84
| 00000006 ed6f£730 00007ff7 f46albde PicoMe+OxlcBe
I 00000006 ed6f£790 00007ff7 f46a1d99 PicoMe+0xzlbde
up: ” | L
| 00000006 edbff?c0 00007ffd 6£66c902 PicoMe+0x1d99
Tweeted PICOMe In February before WSL 00000006 edef£7f0 00007ffd 6fd9bfad KERNEL32!BaseThreadInitThunk+0x22
| 00000006 ed6f£820 00000000 00000000 ntdll!RtlUserThreadStart+0x34
was even announced

DESIGN [SSUES IN PREVIEW BUILDS

All WSL process’ handles were kernel handles
* Handle table appears empty to all tools and software
* Impossible to determine resource access
* Could inject Win32 threads into Pico processes
e But can still change context of Pico threads
* Kernel-mode callers can still do the above — could still cause issues
* Could inject memory/duplicate handles/read/write memory of Pico processes from Win32 processes
* Allocations < 64KB are allowed for Pico processes, due to compatibility
* No PEB, no NTDLL, no TEB, etc... and the main executable is ELF
* Would security products ready to handle these types of processes?

* Reached out to Microsoft in order to help address these issues and provide suggestions

STATE OF CURRENT RELEASE (THE GOQOD)

Processes now show up in Task Manager
SelocateProcessiImageName now returns the correct Pico Process name
LxCore driver is now ACLed as follows:

 D:P(A;;GA;;;S-1-5-18)S:(TL;;0x0;;;S-1-19-512-4096)

e SACL: Trust Label ACE: S-1-19-512-4096 (WINDOWS LITE)

* In other words, only allows a Protected Process Light, at the Windows Level (5) to communicate with it
Developer mode is now an enforcement as only way to obtain handle is through LxssManager
Can fully see network I/O in netstat and other tools, attributed to the correct process

* Same for file I/O in resource monitor

PspProcessOpen and PspThreadOpen now perform similar checks for Pico processes as they do for
Protected Processes — certain access rights are not permitted if one side is Win32

e Only PROCESS_QUERY_LIMITED_INFORMATION, PROCESS_TERMINATE and SYNCHRONIZE rights allowed

STATE OF CURRENT RELEASE (THE BAD)

* Some things remain by design:

* Because of VFS-in-kernel implementation — file handles are still kernel handles

* Similar for any Linux synchronization file descriptors that map to NT objects
* The reality is that Pico processes execute ELF binaries, so no PE files / image sections (aka no DLLs, etc.)
* And hence no AppLocker
e Others are still dubious, but understandable due to compatibility concerns:
 Still no documented API for 3™ parties to receive Pico process notifications
* No API at all for Pico thread notifications
e Also, minor WinDbg annoyances:
» lIprocess does not understand Pico processes (will show “System Process” for all of them)

* No symbols for LxCore, so cannot analyze Pico processes or their state

ATTACK SURFACE ANALYSIS

216 system calls that can now result in possible local privilege escalation

* Yay! An extra 700KB attack surface!
* Full network access (within firewall rules)
* Full disk access (within token rules)
 Ransomelfware, anyone?
 BSODs were found — accidentally — during the Insider Preview
* One NULL pointer dereference
* One invalid pointer dereference (may have led to LPE)

* And this is without anyone actually fuzzing this thing!
* At least the IPC interfaces are locked down... (for now)

e But an unprivileged user can replace the init daemon!

e - Optional feature for now, requires admin to enable

SECURITY DESIGN CONSIDERATIONS

KERNEL CALLOUT & API BEHAVIOR FOR ENDPOINT PRODUCTS

PROCESS / THREAD NOTIFICATIONS & BEHAVIOR

* Pico Processes will not result in notifications registered through PsSetCreateProcessNotifyRoutine or
PsSetCreateProcessNotifyRoutineEx

* Pico Threads will not result in notifications registered through PsSetCreateThreadNotifyRoutine or
PsSetCreateThreadNotifyRoutineEx

* Undocumented API exists: PsSetCreateProcessNotifyRoutineEx2 which allows requesting notifications
for Pico Processes

« The PS_CREATE_NOTIFY_INFO Flags field now contains an undocumented field to indicate this is a Pico process
e Used by tcpip.sys, but not Windows Defender (probably would have to document it at that point)

» Essentially no documented way to have visibility into the creation/termination of Pico applications

e WARNING: No NTDLL, no PEB, no TEBs, no KUSER_SHARED DATA, no API Set Map, no Section Object!

IMAGE LOAD NOTIFICATIONS & BEHAVIOR

* Nothing is ever loaded with SEC_IMAGE inside of a Pico Process — no PE files exist so no Image Section
Objects can be created

* As such, no callbacks received if registered through PsSetLoadImageNotifyRoutine

e Careful: many security products rely on these callbacks to either see NTDLL loading or to see the .EXE itself loading
(indicates process is now running, and called in-process, vs. process was started, and called out-of-process)

* That being said, if _all memory mappings are enumerated (undocumented), will see SEC_FILE mappings
associated with the ELF binary and the .so files which have been mapped inside of it

* For example, see Process Hacker
e Everythingis ELF.

* PE parsers will not work/break

MINIFILTER & WFP NOTIFICATIONS AND BEHAVIOR

* Filter Manager will issue notifications for all File I/O issued from a Pico Process

* Unfortunately, because all I/O is done by the kernel through loCreateFile/ZwReadFile/ZwWriteFile APIs
which will set Previous Mode to kernel

e All file handles will thus be kernel handles!

» Additionally, attempting to lookup the PID/TID will return a Pico Process — with no API to actually
indicate that this is a Pico Process

* Will probably confuse many security products and make them crash/assert

» Additionally, if product keeps PID/TID state: won’t find anything, because of lack of notifications

* QUICK DEMO: SysInternals Procmon and Pico Processes

5
-
s
.......

/y
rIIIII’f.JIHH TRRAR
0ot ..‘qﬁ 08

. :

I i TR S o L o T
" FORENSIC ANALYSIS(‘R‘,A)
VISIBILITY INTO LINUX PROCESSES . |

(u__\u " " \\‘nﬁ__q"/

DBGVIEW

e With certain tracing settings turned on, can see significant volume of data from LxCore
* LxpAdssBusLoggingEnabled — full view into all ADSS/BUS IPC communications

* LxKdBreakPointErrorLevel — full view of every error/warning

* However, will NT_ASSERT in many cases, so a debugger is needed to avoid a blue screen of death

* LxpTracelastSyscall — full view of every system call

WINDBG

* The debugger does not have any type information for Ixss.pdb at this time

* Requesting Microsoft to add some basic types/extensions (or use NatVis) to dump current WSL instances,
thread groups, processes, and file descriptors opened

* Will be working on writing my own scripts/extensions to dump this data — expect to publish on my GitHub
(ionescu007) page at a later time

e Start with Ixcore!LxGlobal
e Contains a linked list of all currently active instances
* Dump each instance...

e Contains linked list of all running thread groups, etc...

/y
r”””f-ir||'. FIAN
0ot ..‘qﬁ 08

~ DEMO 1: ANALYSIS OF A PICO PROCESS i

> : p P ;)
[] | I

. . \

’ ~ e | - \

/y
r”””f-ir||'. FIAN
0ot ..‘qﬁ 08

L R SR o H\‘i"‘i.‘{'/
- DEMO 2: VISUAL STUDIO AND LINUX -
. : _ : > - ',~I-0 :; |

/4
”U!’f.er'I TR
0ot ’.‘QB 08

@ .
.!
‘t
.
g
v
“
L.
-~
4
4
’

I '-

>]

- . '

1
- ‘ L
\ ’

A ’
0 A /
- b ’

CONCLUSION

* Microsoft took the time to both address an onslaught of user requests for more functionality (over 700 issues
filed) throughout the Insider Preview as well as actually address absolutely 100% of the technical issues |
privately brought up to them

* The publishing of the blog posts and videos provides useful, good, internals information for researchers, power
users, and administrators

* However — have not seen actual guidance for AV vendors at this point
» PsSetCreateProcessNotifyRoutineEx2 remains undocumented
* No PsIsPicoProcess and/or PsisMinimalProcess or similar documented API
* Most security software would probably crash/assert when hit with processes that have no PEB, NTDLL, etc...

* Should vendors start building ELF parsers? Should they launch their Linux AV SKU (if they have one) in WSL?

» Afraid that vendors will do what they do best: hook/hack their way around, use undocumented data structures
and APIs

REFERENCES & GREETZ

* Sincere thanks to the following people for their assistance, support and help with this presentation and
WSL-related research:

* Arun Kishan, Nick Judge, Jamie Schwartz, Deepu Thomas, Jason Shirk, John Lento
* Thanks to Ange Albertini for his amazing work on the presentation logo “Evil Penguin Hiding in Windows”

» Be sure to check out the official WSL Blog and GitHub as well as the Product Page (release notes, etc...)

e https://blogs.msdn.microsoft.com/wsl

e https://github.com/Microsoft/BashOnWindows

e https://msdn.microsoft.com/en-us/commandline/wsl/

e https://github.com/ionescu007/Ixss for presentation slides and code

https://blogs.msdn.microsoft.com/wsl
https://github.com/Microsoft/BashOnWindows
https://msdn.microsoft.com/en-us/commandline/wsl/
https://github.com/ionescu007/lxss

//// *

o
a f'()
oy) |
Ogr .‘-Q HHH\
‘r, 0%

