
THE LINUX KERNEL HIDDEN
INSIDE WINDOWS 10

BLACKHAT 2016

ALEX IONESCU

@AIONESCU

BIO

Vice President of EDR Strategy at CrowdStrike, a security startup

Previously worked at Apple on iOS Core Platform Team

Co-author of Windows Internals 5th and 6th Editions

Reverse engineering NT since 2000 – main kernel developer of ReactOS

Instructor of worldwide Windows Internals classes

Conference speaking:

• Infiltrate 2015

• Blackhat 2016, 2015, 2013, 2008

• SyScan 2015-2012, NoSuchCon 2014-2013, Breakpoint 2012

• Recon 2016-2010, 2006

For more info, see www.alex-ionescu.com

http://www.alex-ionescu.com/

MJF HAS SPOKEN: YOU CAN ALL GO HOME NOW

“Spoiler alert”: This is not how the English
language works.

OUTLINE

• Architectural Overview

• Minimal and Pico Processes

• Pico Provider Interface

• LXSS Components

• LxCore Kernel-Mode Driver

• Functionality, Interfaces & Attack Surface

• LxssManager Service

• Functionality, Interfaces & Attack Surface

• LXSS IPC Interfaces

• Win32-Linux Communication

OUTLINE

• Security Design Considerations

• Before & After

• Kernel Callout & API Behavior for Endpoint Products

• Forensic Analysis (DbgView / WinDBG) (if time allows)

• Pico Demos (if time allows)

• Conclusion

• Q & A

ARCHITECTURAL OVERVIEW
PICO PROCESS INTERNALS

MINIMAL PROCESS

• Unofficially implemented since Windows 8.1, a minimal process is a bare-bones process with a token, a
protection level, a name, and a parent.

• Empty address space (no PEB, no NTDLL, no KUSER_SHARED_DATA)

• No handle table

• EPROCESS.Minimal == 1

• Threads created inside of a minimal process are called minimal threads

• No TEB

• No kernel-mode driven user-stack setup

• ETHREAD.Header.Minimal == 1

• In Redstone 1 these can be created with NtCreateProcessEx from kernel-mode with flag 0x800

• Built-in ones include:

• “Memory Compression”, managed by the Store Manager

• “Secure System”, managed by Virtual Secure Machine (VSM)

PICO PROCESS

• A Pico Process is a minimal process which has a Pico Provider (kernel-mode driver)

• Same state as a minimal process, but EPROCESS.PicoContext is != NULL

• Both Pico and Normal Threads can exist within a Pico Process

• ETHREAD.PicoContext is != NULL for Pico Threads

• When a minimal thread makes a system call, it’s routed to a Pico Provider instead

• When ETW stack traces are being generated for a Pico Process, the Pico Provider is called

• When a user-mode exception is raised within a Pico Process, the Pico Provider is called instead

• Also when a Probe and Lock / MDL fault is generated on a user-range

• When the name of a Pico Process is being requested, the Pico Provider is called instead

• When a handle is being opened to a Pico Process or Pico Thread, the Pico Provider is called

• When a Pico Thread and/or a Pico Process die, the Pico Provider is notified

• When a Pico Process is being terminated, the Pico Provider is called instead

PICO PROVIDERS

• Pico providers are essentially custom written kernel modules which implement the necessary callbacks
to respond to the list of possible events (shown earlier) that a Pico process can cause to arise

• NT implementation of the “Drawbridge” Microsoft Research Project

• Can be registered with PsRegisterPicoProvider

• Pass in array of functions which handle the required event callbacks

• Receive array of functions which allow creation and control of Pico processes (see next slide)

• However, only allowed if PspPicoRegistrationDisabled is FALSE

• Set as soon as PipInitializeCoreDriversByGroup returns – before ELAM and 3rd party drivers can load

• Currently only one Pico provider can be registered, as the callbacks are simply a global function array

PICO API

• Create Pico processes and threads: PspCreatePicoProcess, PspCreatePicoThread

• Get and set PicoContext pointer: PspGetPicoProcessContext, PspGetPicoThreadContext

• Get and set CPU CONTEXT structure: PspGetContextThreadInternal, PspSetContextThreadInternal

• Destroy Pico processes and threads: PspTerminateThreadByPointer, PspTerminatePicoProcess

• Resume and suspend Pico processes and threads: PsResumeThread, PsSuspendThread

• Set user-mode FS and GS segment for Pico threads: PspSetPicoThreadDescriptorBase

BASIC BLOCK DIAGRAM

ref: https://blogs.msdn.microsoft.com/wsl/2016/05/23/pico-process-overview/ © Microsoft Corporation 2016

https://blogs.msdn.microsoft.com/wsl/2016/05/23/pico-process-overview/

PICO PROVIDER SECURITY

• Pico Providers also “register” with PatchGuard, providing it with their internal list of system call handlers

• Essentially, this means that the Linux system calls are protected by PatchGuard, just like the NT ones

• Additionally, attempting to register a “fake” Pico Provider, or modifying key Pico Provider state will also
result in PatchGuard’s wrath

• For example, playing with PspPicoRegistrationDisabled

• Even if restoring the value back to its original value

• Patching the callbacks (PspPicoProviderRoutines) will also result in detection by PatchGuard

• As seen before, only “core” drivers can be Pico Providers

• Boot Loader enforces that core drivers are signed by Microsoft, and “lxss.sys” is hardcoded inside the code

WSL COMPONENT OVERVIEW

• A Pico Provider driver (LXSS.SYS / LXCORE.SYS) which provides the kernel-mode implementation of a
Linux-compatible Kernel ABI and API, as well as a Device Object (\Device\lxss) for command & control.

• It also provides a “bus” between the various WSL Instances and the NT world, and implements a virtual file
system (VFS) interface, including a device inode for command & control on the Linux side.

• A user-mode management service (LxssManager), which provides an external-facing COM interface,
relying information to the Pico Provider through its Device Object

• A Linux “init” daemon (like Upstart, systemd, etc…), which is created for every active WSL Instance and
is the ancestor of all other Linux processes

• A Windows management process for performing updates/servicing, installation, uninstallation, and user
management (LxRun.exe)

• A Windows launcher service which communicates with the LxssManager and spawns a new instance of
WSL (and hence init daemon) and executes the desired process (typically “/bin/bash”)

ARCHITECTURAL OVERVIEW
LXCORE (KERNEL-MODE) INTERNALS

LXCORE FUNCTIONALITY

• LXCORE.SYS is the large (800KB) kernel-mode Ring 0 driver which implements all the functionality that a
Linux application inside of a Pico process will see

• In some cases, functionality is implemented from scratch (such as pipes)

• In other cases, functionality is wrapped on top of an existing NT kernel mechanism or subsystem (scheduling)

• In yet other cases, functionality is heavily built on top of an existing NT kernel primitive, with some from-scratch
functionality on top (VFS + inodes on top of NTFS for VolFs/DrvFs, but on top of NT Process APIs for ProcFs, for
example)

• Decision on how far to go down with wrapping vs. re-implementing was done based on compatibility

• For example, Linux pipes have subtle enough differences from NT pipes that NPFS could not be used

• In some cases, compatibility isn’t perfect – NTFS is not quite identical to EXT+VFS, but “close enough”

• Reliance on many key portability design decisions done by NT team from day 1 (for POSIX support)

LXCORE CUSTOMIZATION

• There are a few registry settings that can be controlled/configured to modify LxCore behavior:

• PrintSysLevel

• PrintLogLevel

• KdBreakPointErrorLevel

• TraceloggingLevel

• KdBreakOnSyscallFailures

• TraceLastSyscall

• WalkPicoUserStack

• RootAdssbusAccess

• All present in the HKLM\SYSTEM\CurrentControlSet\Services\lxss\Parameters key

SYSTEM CALLS

• Full “official” list available from Microsoft: https://msdn.microsoft.com/en-
us/commandline/wsl/release_notes

• 216 implemented as of the release build

• Called by LxpSysDispatch

• Support for ptrace() tracing of system calls

• Can enable breaking on system call failure, for debugging

• LxpTraceSyscall used for both ETW logging (LxpPrintSysLevel) and DbgView (LxpTraceLastSyscall)

https://msdn.microsoft.com/en-us/commandline/wsl/release_notes

VFS / FILE SYSTEM

• Implements a “VolFs” system, which is the Linux-facing file system with support for UNIX rights, etc.

• Implemented on top of Alternate Data Streams and Extended Attributes part of NTFS

• Not interoperable with Win32 applications

• Also implements a “DrvFs” system, which is the Linux-facing file system that maps Win32 drives

• Implemented as mount points that map to actual NTFS data on the machine

• Rights are dependent on the token that was used to launch the initial WSL instance

• Provides emulation/wrapping/actual implementation for various virtual file system concepts:

• ProcFs mostly works (calls kernel query APIs as needed) or just already has the data

• TmpFs also exists and implements various devices, including the Binder (key Android IPC from the BeOS days)

• SysFs is there, etc…

VFS BLOCK DIAGRAM

ref: https://blogs.msdn.microsoft.com/wsl/2016/06/15/wsl-file-system-support/ © Microsoft Corporation 2016

https://blogs.msdn.microsoft.com/wsl/2016/06/15/wsl-file-system-support/

LXCORE INITIALIZATION

• When LxCore initializes (LxInitialize), it first

• Registers itself as a Pico Provider

• Then creates an IRP queue for the IPC mechanism,

• Sets up Event Log tracing,

• And creates its \Device\lxss Device Object with the appropriate Security Descriptor

• No other work is performed until IRPs are received

• Create/Close/Cleanup for managing handles to its various entities

• DeviceControl for sending actual command & control requests

• Read/Write for the IPC mechanism

DEVICE OBJECT INTERFACES

• Although \Device\lxss is a single Device Object, it implements 5 different interfaces on top of it.

• A Root Bus Interface – used by LxssManager to create new Instances. Only accepts the single IOCTL.

• A Bus Instance Interface – automatically opened by the Root Bus Interface when a new Instance is
created. Internally represented as \Device\lxss\{Instance-GUID}. Acts as the command and control
interface for the Instance.

• A Bus Client Interface – used by LxssManager whenever an IPC Bus Server is registered or connected to,
such as when talking with the init daemon. Represented as \Device\lxss\{Instance-GUID}\Client

• An IPC Server Port Interface – used when an IPC Bus Server is registered. Represented by
\Device\lxss\{Instance-GUID}\ServerPort

• An IPC Message Port Interface – used when an IPC Bus Client connects to its Server. Represented by
\Device\lxss\{Instance-GUID}\MessagePort

ROOT BUS / INSTANCE CREATION

• The Root Bus implements a single IOCTL:

• 0x22006F = IOCTL_ADSS_CONTROL_DEVICE_CREATE_INSTANCE

• A handle is obtained by directly opening \Device\lxss with no other parameter or EA

• LxssInstance::_StartInstance called by LxssInstance::StartSelf is normally the only path here

• Creating an instance requires

• An instance GUID

• A root directory handle (RootFs)

• A temporary directory handle (TmpFs)

• A job object handle for the init process

• A token handle for the init process

• Information on which paths to map with DriveFs

• An instance termination event handle

BUS INSTANCES

• Once an instance is created, LxCore will automatically open a handle to its corresponding file object
under the \Device\lxss namespace, which will be represented by its GUID

• Cannot arbitrarily attempt to open \Device\lxss\{GUID} from user-mode

• Accepts the following IOCTLs:

• 0x220073 = IOCTL_ADSS_SET_INSTANCE_STATE

• 0x22007B = IOCTL_ADSS_BUS_MAP_PATH

• 0x22007F = IOCTL_ADSS_BUS_MAP_PATH_2

• 0x220083 = IOCTL_ADSS_UPDATE_NETWORK

• 0x220087 = IOCTL_ADSS_CLIENT_OPEN

• Starting an instance will cause the creation of the initial thread group & process for the init daemon

• Other IOCTLs used for DriveFs mappings and for updating the NICs exposed to the WSL Instance

BUS CLIENTS
• Automatically opened by the Bus Instance when IOCTL_ADSS_CLIENT_OPEN is used, creating a File

Object with the “\Client” suffix under the Instance GUID

• Accepts the following IOCTLs:

• 0x20002B = IOCTL_ADSS_REGISTER_SERVER

• 0x22002F = IOCTL_ADSS_CONNECT_SERVER

• 0x22003F = IOCTL_ADSS_ENLIGHTENED_FORK

• 0x22004B = IOCTL_ADSS_ENLIGHTENED_FORK_CALLBACK

• 0x22004F = IOCTL_ADSS_ENLIGHTENED_FORK_CALLBACK_STATUS

• 0x22008F = IOCTL_ADSS_FILE_SYSTEM_CALLBACK

• 0x220093 = IOCTL_ADSS_FILE_SYSTEM_CALLBACK_STATUS

• Additionally, exposed to the WSL Instance itself in the Linux world under \dev\lxss

• Normally only the init daemon (PID == 1) is allowed a handle to this

SERVER /MESSAGE PORTS

• A server port is automatically created as a \ServerPort file object under the Instance GUID when
IOCTL_ADSS_REGISTER_SERVER is sent from a Bus Client

• Similarly, a message port (\MessagePort) is created when
IOCTL_ADSS_IPC_SERVER_WAIT_FOR_CONNECTION is used (and a connection is established)

• Support for all the marshalling and unmarshalling IOCTLs is implemented here

• Also supports map/unmap memory IOCTLs

• Allows registration and signaling of a port-associated event

• And finally registration/unregistration and create/open of shared memory sections

• More in the IPC section…

ARCHITECTURAL OVERVIEW
LXSSMANAGER (USER-MODE) INTERNALS – WIN32 SIDE

LXSSMANAGER INITIALIZATION

• LxssManager (LXSSMANAGER.DLL) is a service-hosted service living inside of a SVCHOST.EXE process

• Runs as a Protected Process Light (PPL) at the Windows Level (0x51)

• Will discuss in the security section

• Registers a COM Class (CLSID_LxssUserSession) which implements the IID_ILxssSession interface

LXSSMANAGER INTERFACES

• LxssManager has internal classes for managing the state of WSL in general (Filesystem::,
LxssNetworking::/LxssLinuxTimezone::LifetimeManager::)

• It exposes LxssSession:: over COM

• GetCurrentInstance(), StartDefaultInstance(), SetState(), QueryState(), InitializeFileSystem()

• Once an instance is started or queried, an IID_ILxssInstance interface is exposed (LxssInstance::)

• GetConfiguration(), GetId(), QueryState(), SetState(), CreateLxProcess(), RegisterAdssBusServer(),
ConnectAdssBusServer(), GetState(), StartSelf(), StopSelf(), GetSuspendState()

• Some requests can be done from any arbitrary user (CreateLxProcess) while others require Admin rights
(RegisterAdssBusServer)

• Two in-box components communicate with it: LXRUN.EXE and BASH.EXE

LXRUN INTERFACE

• LxRun (LXRUN.EXE) is responsible for User Management, Installation and Uninstallation of WSL,
Servicing/Updates.

• Functionality exposed through command-line interface: /install, /uninstall, /setdefaultuser, /update

• Uses the lx::helpers::SvcComm class to communicate with LxssManager

• Uses lx::helpers::LxUser to provide user management

• Essentially done by launching the /usr/sbin/usermod, /usr/bin/id, /usr/bin/passwd, /usr/sbin/addgroup,
/usr/sbin/deluser, /usr/sbin/adduser binaries in an invisible WSL Instance

• Users lx::run (DoUpdate, DoInstall, HashFile, InstallCleanup, RemoveFolderStructure, AcquireFile)

• Again, relies on Linux binaries such as /usr/lib/update-notifier/apt-check, /usr/bin/apt, /usr/sbin/update-locale

BASH.EXE INTERFACE

• BASH.EXE is responsible for being the Win32-friendly launcher of WSL Instances

• lx::bash::DoLaunch is used to either launch /bin/bash or another binary, if BASH.EXE –c “valid path” was used

• NOTE: BASH.EXE –c “man 2 open” will actually launch “/usr/bin/man” and not “/bin/bash –c /usr/bin/man”

• Launch is done by using the same lx::helpers::SvcComm class as LXRUN.EXE

• Reads the DefaultUid in the user’s registry settings to associate the correct Linux user with which to spawn

• HKCU\Software\Microsoft\Windows\CurrentVersion\Lxss\

ARCHITECTURAL OVERVIEW
INIT (USER-MODE) INTERNALS – LINUX SIDE

INIT DAEMON INITIALIZATION (INITENTRY)

• close() every handle from 0 to 2048

• open() a handle to /dev/kmsg and then dup3() into stderr it for error logging

• open() a handle to /dev/null and then dup3() into stdin and stdout

• open() a handle to /dev/lxss

• Call ConfigCreateResolvConfSymlinkTarget to symlink ../run/resolveconv/resolv.conf into /etc/resolv.conf

• Call InitConnectToServer and send IOCTL_ADSS_CONNECT_SERVER to connect to the IPC Server “lxssmanager”

• Call SaveSignalHandlers and SetSignalHandlers, using sigaction() to save and set new signal handlers as needed

• Call ReadMessageFromServer in a loop, calling reboot() if an invalid message is received

INIT RESPONSIBILITIES

• Through the lxssmanager IPC channel, init will listen for message requests.

• Update Network Information (InitUpdateNetworkInformation) -> update /etc/resolv.conf

• Update Timezone Information (ConfigUpdateTimezoneInformation) -> update
/usr/share/zoneinfo/Msft/localtime and symlink it to /etc/localtime

• Update Hostname Information (ConfigUpdateHostNameInformation) -> sethostname(),
setdomainname(), update /etc/hostname and create /etc/hosts

• Create process (CreateProcess) -> create the environment block, set the command line and working
directory, setup the standard handles, then call fork(). Once the new PID exists, setup UID/GID,
HOME/PATH environment variables, set the TTY SID, duplicate the standard handles and execvpe() the
new process

• Create session leader (InitCreateSessionLeader) -> fork() another init and connection to lxssmanager

LXSS IPC INTERFACES
WIN32-LINUX COMMUNICATION

SOCKETS / FILES

• Unix sockets are supported for Linux-Linux application communication, but Internet sockets are also
implemented, allowing both local and remote communications over IP

• By creating a localhost server, a Win32 application can connect to it and engage in standard socket API
communications

• Similarly, the server could be on the Win32 side, and the client is in an WSL Instance

• Raw sockets are supported, but require an Admin Token on the NT side to comply with TCPIP.SYS checks

• Using DriveFs, it should be possible for a Windows and Linux app to use read/write/epoll on a file
descriptor on the Linux side, and a file object on the Windows side with Read/Write/WaitForSingleObject

BUS IPC (“ADSS” IPC)

• The only other way for a Windows and Linux application to communicate is to use the internal LxCore-
provided “Bus” between clients of an instance, part of the original “ADSS” interface (Android Sub System)

• Allows a named server to be registered and connected to, after which both sides can:

• Use Read/Write API calls for raw data

• Use IOCTL API calls for marshal/unmarshal operations

• The Windows side needs to register a server by either sending the correct IOCTL (to the Bus Instance) or by
using the ILxssSession COM Interface and calling the RegisterAdssBusServer method (Administrator only)

• Then, can use the IOCTL_ADSS_IPC_SERVER_WAIT_FOR_CONNECTION on the returned Server Port handle

• The Linux side needs to open a handle to the Bus Instance (\dev\lxss) as root (UID 0) and then send the
IOCTL_ADSS_CONNECT_SERVER IOCTL

• Restricted to the init daemon only (PID must be 1)

• Or, set “RootAdssbusAccess” in HKLM\CCS\Services\lxss\Parameters key to 1

BUS IPC MARSHALLING

• With a connection setup, the following types of metadata can be marshalled

• PIDs from Linux to Win32. Used during process creation by the init process to provide the fork()’ed PID

• Console handles from Win32 to Linux. Used during process creation to setup the TTY/SID after unmarshalling,
to correspond to the Win32 console handles

• Pipe handles from Win32 to Linux. Can be used during process creation to associated the in/out/error handles
of the Linux application with a Win32 pipe handle. Allows “piping” from Linux to Win32, but sadly not exposed.

• Tokens from Win32 to Linux. Overrides the NT token stored in the LXPROCESS structure used for the next fork()
called. Used during process creation, but provides interesting capabilities.

• IOCTLs:

• 0x220097/9B = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_PID

• 0x22009F/A3 = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_HANDLE

• 0x2200A7/AB = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_CONSOLE

• 0x2200AF/B3 = IOCTL_ADSS_IPC_CONNECTION_MARSHAL/UNMARSHAL_FORK_TOKEN

BUS IPC DATA EXCHANGE

• A Linux application can share part of its virtual address space with an NT application, which can then map it

• Both sides can register/unregister and create/open shared memory sections, which appear as file descriptors
on Linux and Section Object handles on Win32

• A Win32 application can register an Event Object handle and associate it with the message port, and then
call WaitForSingleObject on it – the Linux side can signal it with an IOCTL

• A Linux application can use epoll() to wait on its message port file descriptor, and a Win32 application can
signal it with an IOCTL

• IOCTLs:

• 0x220037/3B = IOCTL_ADSS_IPC_CONNECTION_SHARE/UNSHARE_MEMORY

• 0x220043/47 = IOCTL_ADSS_IPC_CONNECTION_MAP/UNMAP_MEMORY

• 0x220053/57 = IOCTL_ADSS_IPC_CONNECTION_CREATE/OPEN_SHARED_SECTION

• 0x22005B/5F = IOCTL_ADSS_IPC_CONNECTION_REGISTER/UNREGISTER_SHARED_SECTION

• 0x220063/67 = IOCTL_ADSS_IPC_CONNECTION_REGISTER/SET_SIGNAL_EVENT

SECURITY DESIGN CONSIDERATIONS
BEFORE & AFTER

INITIAL ANALYSIS

• Pico Processes were originally the cornerstone behind “Project Astoria”

• Full Android Runtime on Windows 10 Mobile / Phone, implemented as a “true” NT Subsystem

• Only on Phone SKU, and was killed in 1511 Update RTM

• In Windows 10 Anniversary Update Previews, Pico functions were once again functional

• Adss.sys was replaced by lxss.sys

• No more “Project Astoria”: Pico processes are now used for the re-re-reimplementation of the original
POSIX subsystem from Windows NT

• New Name: Windows Subsystem for Linux (WSL)

• Instead of running Android, the user-space environment is Ubuntu 14

• Significant improvements to run desktop-class Linux applications were made

• Other Android-specific features removed, such as /dev/fb or /dev/adb

DESIGN ISSUES IN PREVIEW BUILDS
• WSL processes were initially invisible in Task Manager

• Still visible in other tools

• Documented kernel API did not provide notification for Pico processes or threads

• Invisible from endpoint security products/AV

• WSL processes and libraries (.so) are not loaded as SEC_IMAGE, so no image load notifications

• Invisible from endpoint security products/AV

• Completely bypasses AppLocker rules

• WSL file access and network I/O is kernel-sourced

• Does result in minifilter and WFP callbacks, but might be “trusted” due to kernel being the caller

• SeLocateProcessImageName returns NULL for Pico processes

• Cannot create firewall rules or get the name in WFP callout driver

• “Developer Mode” and “Feature Installation” were required for WSL – but driver could be
communicated with from

DESIGN ISSUES IN PREVIEW BUILDS
• LxCore is installed by default in the kernel

even if the feature is disabled and
developer mode is turned off

• Checks were done only by LxssManager
over the COM interface, but not the driver
itself

• Driver allowed Administrators to have RW
Access

• As such, could completely bypass
LxssManager/Developer Mode/Feature
Installation and directly send commands to
the driver (from Admin)

• Tweeted “PicoMe” in February before WSL
was even announced

DESIGN ISSUES IN PREVIEW BUILDS

• All WSL process’ handles were kernel handles

• Handle table appears empty to all tools and software

• Impossible to determine resource access

• Could inject Win32 threads into Pico processes

• But can still change context of Pico threads

• Kernel-mode callers can still do the above – could still cause issues

• Could inject memory/duplicate handles/read/write memory of Pico processes from Win32 processes

• Allocations < 64KB are allowed for Pico processes, due to compatibility

• No PEB, no NTDLL, no TEB, etc… and the main executable is ELF

• Would security products ready to handle these types of processes?

• Reached out to Microsoft in order to help address these issues and provide suggestions

STATE OF CURRENT RELEASE (THE GOOD)
• Processes now show up in Task Manager

• SeLocateProcessImageName now returns the correct Pico Process name

• LxCore driver is now ACLed as follows:

• D:P(A;;GA;;;S-1-5-18)S:(TL;;0x0;;;S-1-19-512-4096)

• SACL: Trust Label ACE: S-1-19-512-4096 (WINDOWS LITE)

• In other words, only allows a Protected Process Light, at the Windows Level (5) to communicate with it

• Developer mode is now an enforcement as only way to obtain handle is through LxssManager

• Can fully see network I/O in netstat and other tools, attributed to the correct process

• Same for file I/O in resource monitor

• PspProcessOpen and PspThreadOpen now perform similar checks for Pico processes as they do for
Protected Processes – certain access rights are not permitted if one side is Win32

• Only PROCESS_QUERY_LIMITED_INFORMATION, PROCESS_TERMINATE and SYNCHRONIZE rights allowed

STATE OF CURRENT RELEASE (THE BAD)

• Some things remain by design:

• Because of VFS-in-kernel implementation – file handles are still kernel handles

• Similar for any Linux synchronization file descriptors that map to NT objects

• The reality is that Pico processes execute ELF binaries, so no PE files / image sections (aka no DLLs, etc.)

• And hence no AppLocker

• Others are still dubious, but understandable due to compatibility concerns:

• Still no documented API for 3rd parties to receive Pico process notifications

• No API at all for Pico thread notifications

• Also, minor WinDbg annoyances:

• !process does not understand Pico processes (will show “System Process” for all of them)

• No symbols for LxCore, so cannot analyze Pico processes or their state

ATTACK SURFACE ANALYSIS
• 216 system calls that can now result in possible local privilege escalation

• Yay! An extra 700KB attack surface!

• Full network access (within firewall rules)

• Full disk access (within token rules)

• Ransomelfware, anyone?

• BSODs were found – accidentally – during the Insider Preview

• One NULL pointer dereference

• One invalid pointer dereference (may have led to LPE)

• And this is without anyone actually fuzzing this thing!

• At least the IPC interfaces are locked down… (for now)

• But an unprivileged user can replace the init daemon!

• Optional feature for now, requires admin to enable

SECURITY DESIGN CONSIDERATIONS
KERNEL CALLOUT & API BEHAVIOR FOR ENDPOINT PRODUCTS

PROCESS / THREAD NOTIFICATIONS & BEHAVIOR

• Pico Processes will not result in notifications registered through PsSetCreateProcessNotifyRoutine or
PsSetCreateProcessNotifyRoutineEx

• Pico Threads will not result in notifications registered through PsSetCreateThreadNotifyRoutine or
PsSetCreateThreadNotifyRoutineEx

• Undocumented API exists: PsSetCreateProcessNotifyRoutineEx2 which allows requesting notifications
for Pico Processes

• The PS_CREATE_NOTIFY_INFO Flags field now contains an undocumented field to indicate this is a Pico process

• Used by tcpip.sys, but not Windows Defender (probably would have to document it at that point)

• Essentially no documented way to have visibility into the creation/termination of Pico applications

• WARNING: No NTDLL, no PEB, no TEBs, no KUSER_SHARED_DATA, no API Set Map, no Section Object!

IMAGE LOAD NOTIFICATIONS & BEHAVIOR

• Nothing is ever loaded with SEC_IMAGE inside of a Pico Process – no PE files exist so no Image Section
Objects can be created

• As such, no callbacks received if registered through PsSetLoadImageNotifyRoutine

• Careful: many security products rely on these callbacks to either see NTDLL loading or to see the .EXE itself loading
(indicates process is now running, and called in-process, vs. process was started, and called out-of-process)

• That being said, if _all_ memory mappings are enumerated (undocumented), will see SEC_FILE mappings
associated with the ELF binary and the .so files which have been mapped inside of it

• For example, see Process Hacker

• Everything is ELF.

• PE parsers will not work/break

MINIFILTER & WFP NOTIFICATIONS AND BEHAVIOR

• Filter Manager will issue notifications for all File I/O issued from a Pico Process

• Unfortunately, because all I/O is done by the kernel through IoCreateFile/ZwReadFile/ZwWriteFile APIs
which will set Previous Mode to kernel

• All file handles will thus be kernel handles!

• Additionally, attempting to lookup the PID/TID will return a Pico Process – with no API to actually
indicate that this is a Pico Process

• Will probably confuse many security products and make them crash/assert

• Additionally, if product keeps PID/TID state: won’t find anything, because of lack of notifications

• QUICK DEMO: SysInternals Procmon and Pico Processes

FORENSIC ANALYSIS (EXTRA)
VISIBILITY INTO LINUX PROCESSES

DBGVIEW

• With certain tracing settings turned on, can see significant volume of data from LxCore

• LxpAdssBusLoggingEnabled – full view into all ADSS/BUS IPC communications

• LxKdBreakPointErrorLevel – full view of every error/warning

• However, will NT_ASSERT in many cases, so a debugger is needed to avoid a blue screen of death

• LxpTraceLastSyscall – full view of every system call

WINDBG

• The debugger does not have any type information for lxss.pdb at this time

• Requesting Microsoft to add some basic types/extensions (or use NatVis) to dump current WSL instances,
thread groups, processes, and file descriptors opened

• Will be working on writing my own scripts/extensions to dump this data – expect to publish on my GitHub
(ionescu007) page at a later time

• Start with lxcore!LxGlobal

• Contains a linked list of all currently active instances

• Dump each instance…

• Contains linked list of all running thread groups, etc…

DEMO 1: ANALYSIS OF A PICO PROCESS

DEMO 2: VISUAL STUDIO AND LINUX

DEMO 3: IPC BETWEEN WINDOWS AND LINUX

CONCLUSION

• Microsoft took the time to both address an onslaught of user requests for more functionality (over 700 issues
filed) throughout the Insider Preview as well as actually address absolutely 100% of the technical issues I
privately brought up to them

• The publishing of the blog posts and videos provides useful, good, internals information for researchers, power
users, and administrators

• However – have not seen actual guidance for AV vendors at this point

• PsSetCreateProcessNotifyRoutineEx2 remains undocumented

• No PsIsPicoProcess and/or PsIsMinimalProcess or similar documented API

• Most security software would probably crash/assert when hit with processes that have no PEB, NTDLL, etc…

• Should vendors start building ELF parsers? Should they launch their Linux AV SKU (if they have one) in WSL?

• Afraid that vendors will do what they do best: hook/hack their way around, use undocumented data structures
and APIs

REFERENCES & GREETZ

• Sincere thanks to the following people for their assistance, support and help with this presentation and
WSL-related research:

• Arun Kishan, Nick Judge, Jamie Schwartz, Deepu Thomas, Jason Shirk, John Lento

• Thanks to Ange Albertini for his amazing work on the presentation logo “Evil Penguin Hiding in Windows”

• Be sure to check out the official WSL Blog and GitHub as well as the Product Page (release notes, etc…)

• https://blogs.msdn.microsoft.com/wsl

• https://github.com/Microsoft/BashOnWindows

• https://msdn.microsoft.com/en-us/commandline/wsl/

• https://github.com/ionescu007/lxss for presentation slides and code

https://blogs.msdn.microsoft.com/wsl
https://github.com/Microsoft/BashOnWindows
https://msdn.microsoft.com/en-us/commandline/wsl/
https://github.com/ionescu007/lxss

Q & A
THANK YOU

